Перенос через знак равно

Правильно переноса множителя за знак равенства

Перенос через знак равно

Главное здесь — не последовательность шагов (она может быть любой), а их правильность.

Разные последовательности дадут разные пути к одному и тому же результату. Путь может получиться простым, может получиться сложным. Тут практика рулит. Решите десяток-другой примеров, сами почувствуете, как проще.

В данном разделе рассматриваются только два базовых тождественных преобразования уравнений. Кроме этой парочки существует множество других преобразований, которые тоже будут тождественными, но, при определённых условиях.

Скажем, возведение обеих частей уравнения (или формулы) в квадрат будет тождественным преобразованием, если обе части уравнения заведомо неотрицательны. Подобные преобразования рассматриваются в соответствующих темах.

А здесь и сейчас — примеры для тренировки по элементарным преобразованиям.

Простенький пример:

Из формулы

выразите переменную t и найдите её значение при v0=7, v=16, a=3.

Пример посложнее:

Из формулы

выразите переменную m и найдите её значение при x=1, n=2.

А вот задание на основе реального варианта ГИА:

Мощность постоянного тока (в ваттах) вычисляется по формуле P = J2R, где J — сила тока (в амперах), R — сопротивление (в омах).

Перенесём первое слагаемое в правую сторону уравнения. Получим:

Перенесём все числа в одну сторону. В итоге имеем:

Примеры, иллюстрирующие доказательство Править

Для уравнений Править

Допустим мы хотим перенести все иксы из левой части уравнения в правую. Вычтем из обеих частей 5 x

Теперь нужно проверить, совпадают ли левая и правая части уравнения.

Внимание

Заменим неизвестную переменную получившимся результатом:

Теперь можно привести подобные слагаемые:

Перенесём сначала 5x из левой части уравнения в правую:

Теперь перенесём число (−6) из правой части в левую:

Заметьте, знак плюс поменялся на минус, а знак минус — на плюс. Причём неважно, является ли переносимое слагаемое числом, переменной или же целым выражением.

Две части уравнения по определению равны, поэтому можно вычесть из обеих частей уравнения одинаковое выражение, и равенство останется верным. По одну сторону знака «равно» оно сократится с тем, что было.

По другую сторону равенства, выражение, которое мы вычли, появится со знаком «минус».

Правило для уравнений доказано.

Для неравенств Править

Следовательно, 4 — корень уравнения 5x+2=7x-6.

Важно

Эти 2 слагаемых можно переносить отдельно друг от друга.

Таким же образом преобразовывают неравенства:

7x+2514

Собираем каждое число с одной стороны. Получаем:

7×14−25 или 7x−11

Доказательство.

2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным. Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону.

Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».

Это правило зачастую используется для решения линейных уравнений.

Просто нужно запомнить, что при переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число, мы умножаем/делим обе части уравнения на ОДНО и то же число.

Что еще ты вынес из этого примера? Что глядя на уравнение не всегда можно прямо и точно определить, является ли оно линейным или нет. Необходимо сначала полностью упростить выражение, и лишь потом судить, каким оно является.

Линейные уравнения. Примеры.

Вот тебе еще пару примеров для самостоятельной тренировки – определи, является ли уравнение линейным и если да, найди его корни:

Ответы:

1.
Является.

2. Не является.

Раскроем скобки и приведем подобные слагаемые:

Произведем тождественное преобразование – разделим левую и правую часть на :

Мы видим, что уравнение не является линейным, так что искать его корни не нужно.

3. Является.

Произведем тождественное преобразование – умножим левую и правую часть на , чтобы избавиться от знаменателя.

Подумай, почему так важно, чтобы ? Если ты знаешь ответ на этот вопрос, переходим к дальнейшему решению уравнения, если нет – обязательно загляни в тему «ОДЗ», чтобы не наделать ошибок в более сложных примерах. Кстати, как ты видишь, ситуация, когда невозможна.

И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование: обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение.

Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5.

При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы

Начнём с первого тождественного преобразования.

Источник: https://balkonsmart.ru/pravilno-perenosa-mnozhitelya-za-znak-ravenstva

Решение уравнений, правило переноса слагаемых

Перенос через знак равно

УРОК МАТЕМАТИКИ 6 КЛАСС

РЕШЕНИЕ УРАВНЕНИЙ.

Учитель: Тимофеева М. А.

Цель урока: изучение правила переноса слагаемых из одной части уравнения в другую.

Образовательные задачи урока:

  • Уметь применять правило переноса слагаемых при решении уравнений;

Развивающие задачи урока:

  • развивать самостоятельную деятельность учащихся;
  • развивать речь (давать полные ответы грамотным, математическим языком);

Воспитательные задачи урока:

  • воспитывать умение правильно делать записи в тетрадях и на доске;
  • развивать работоспособность.

Оборудование:

  1. Мультимедиа

  2. Интерактивная доска

Основные этапы урока

1. Оргмомент, сообщение цели урока и формы работы

«Если Вы хотите научиться плавать,

то смело входите в воду,

а если хотите научиться решать уравнения,

то решайте их»

Д.Пойа

2. Сегодня мы начинаем изучать тему: «Решение уравнений» (Слайд 1)

Но вы уже учились решать уравнения! Тогда что же мы будем изучать?

— Новые способы решения уравнений.

3. Повторим пройденный материал (Устная работа) (Слайд 2)

Упростить выражения:

1). 3х + х

2). 4а + 3а – а

3). 7m + 8n – 5 m – 3n

4). – 6a + 12 b – 5a – 12b

5). 9x – 0,6y – 14x + 1,2y

Уравнение пришло,
тайн немало принесло

Какие выражения являются уравнениями? (Слайд 3)

3,6 + k = 40

2х – 0,7 = 3,5

9,8 + ( 13,5 + x)

8,2 + 1,6 m – 10

3(4,8 – 1,6) = 9,6

3(a + 4) = 6,4

— 5 x 0,4 y

4. Что называется уравнением?

Уравнение – это равенство, содержащее неизвестное число. (Слайд 4)

Что значит решить уравнение?

Решить уравнение – значит найти его корни или доказать, что их нет.

Решим устно уравнения. (Слайд 5)

1). – 5 х = 35

х = 35 : (- 5)

х = — 7

2). 8 а = — 6,4

а = — 6,4 : 8

а = — 0,8

Какое правило мы используем при решении?

— Нахождение неизвестного множителя.

Запишем несколько уравнений в тетрадь и решим их используя правила нахождения неизвестного слагаемого и уменьшаемого: (Слайд 7)

  1. х + 2,7 = 4,9

  2. 1,8 + а = 7

  3. — 4,5 + в = 2,3

  4. у – 1,3 = 2,4

  5. с – 3,6 = — 8

А как решить такое уравнение?

х + 5 = — 2х – 7 (Слайд 8)

Упростить мы не можем, т. к. подобные слагаемые находятся в разных частях уравнения, следовательно, необходимо их перенести.

(Слайд 9)

Горят причудливо краски, И как ни мудра голова, Вы все-таки верьте в сказки

Сказка всегда права.

Асадов

СКАЗКА.

Давным-давно жили-были 2 короля: черный и белый. Черный король жил в Черном королевстве на правом берегу реки, а Белый король – в Белом на левом берегу. Между королевствами протекала очень бурная и опасная река. Переправиться через эту реку ни вплавь, ни на лодке было невозможно.

Нужен был мост! Строительство моста шло очень долго, и вот, наконец, мост построили.

Всем бы радоваться и общаться друг с другом, но вот беда: Белый король не любил черный цвет, все жители его королевства носили светлые одежды, а Черный король не любил белый цвет и, жители его королевства носили одежды темного цвета.

Если кто-то из Черного королевства переходил в Белое, то сразу попадал в немилость Белого короля, а, если кто-то из Белого королевства переходил в Черное, то попадал в немилость Черного короля. Жителям королевств надо было что-то придумать, чтобы не гневить своих королей. Как вы считаете, что они придумали?

(Ответы детей)

— Переходя мост они меняли цвет одежды на противоположный!

А теперь вернемся к нашим уравнениям и посмотрим, что происходит с числами при переходе через «мост» — из одной части равенства в другую.

— Числа меняют свои знаки на противоположные!

Правило.

При переносе слагаемых из одной части уравнения в другую, знаки изменяем на противоположные!

Используя это правило, решим наше уравнение.

Договоримся, что в левой части у нас будут жить слагаемые, содержащие неизвестное, а в правой части, числа не содержащие буквенного множителя.

х + 5 = — 2х – 7

х + 2х = — 7 – 5

3х = -12

х = -12 : 3

х = — 4

Решим еще несколько уравнений: (Слайд 12)

  1. 7х = х – 12

  2. 8у + 9 = 33

  3. 6х – 5 = 4х + 8

  4. 27 + 3у = 10 у + 6

Во всех рассмотренных примерах мы приводили данные уравнения к виду ах= в, где а≠ 0.

Уравнение вида ах = в, где а ≠0 называется линейным уравнением с одним неизвестным.

Решаем N 1316

Домашнее задание §8 п. 42 N 1342 (а, б)

Итог урока (Слайд 16)

  • я познакомился с …- было непросто …- я добился …- у меня получилось …- хотелось бы …- мне запомнилось …- я попробую …

Источник: https://kopilkaurokov.ru/matematika/uroki/rieshieniieuravnieniipravilopierienosaslaghaiemykh

Линейные уравнения. Полное руководство (2020)

Перенос через знак равно

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое «линейные уравнения»

Все мы с детства знаем такую задачу: «У Васи есть   яблок. Мальчик решил поделиться яблоками с   друзьями. Сколько яблок досталось каждому другу?» Каждый из нас, не задумываясь, ответит: «Каждому другу досталось по   яблока». А вот теперь я предлагаю все же задуматься… Да-да. Оказывается, отвечая на такой простой вопрос ты в голове решаешь линейное уравнение! Смотри:

  или в устной форме – трем друзьям дали по   яблок из расчета, что всего в наличии у Васи   яблок.

Соответственно, дальше ты находишь   путем деления произведения на известный тебе множитель:

И вот ты уже решил линейное уравнение
Теперь дадим этому термину математическое определение.

Линейное уравнениеэто алгебраическое уравнение, у которого полная степень составляющих его многочленов равна  . Оно выглядит следующим образом:

 , где   и   – любые числа и

 .

Для нашего случая с Васей и яблоками мы запишем:

  — «если Вася раздаст всем троим друзьям одинаковое количество яблок, у него яблок не останется»

Иными словами линейное уравнение это такое уравнение, у которого нет иксов в квадрате, в кубе и т.д., здесь есть дроби, но и нет иксов в знаменателях, т.е. нет деления на икс.

«Скрытые» линейные уравнения, или важность тождественных преобразований

Несмотря на то, что на первый взгляд все предельно просто, при решении уравнений необходимо быть внимательным, потому что линейными уравнениями называются не только уравнения вида  , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. Например:

Мы видим, что справа стоит  , что, по идее, уже говорит о том, что уравнение не линейное.

Мало того, если мы раскроем скобки, то получим еще два слагаемых, в которых будет  , но не надо торопиться с выводами! Прежде, чем судить, является ли уравнение линейным, необходимо произвести все преобразования и таким образом, упростить исходный пример. При этом преобразования могут изменять внешний вид, но никак не саму суть уравнения.

Иными словами данные преобразования должны быть тождественными или равносильными. Таких преобразований всего два, но они играют очень, ОЧЕНЬ важную роль при решении задач. Рассмотрим оба преобразования на конкретных примерах.

Перенос влево — вправо

Допустим, нам необходимо решить такое уравнение:

Еще в начальной школе нам говорили: «с иксами – влево, без иксов – вправо». Какое выражение с иксом стоит справа? Правильно,  , а не как не  . И это важно, так как при неправильном понимании этого, казалось бы простого вопроса, выходит неверный ответ. А какое выражение с иксом стоит слева? Правильно,  .

Теперь, когда мы с этим разобрались, переносим все слагаемые с неизвестными в левую сторону, а все, что известно – в правую, помня, что если перед числом нет никакого знака, например,  , то значит число положительно, то есть перед ним стоит знак « ».

ВАЖНО: при переносе через знак равенства, знаки при слагаемых меняются на противоположные.

Перенес? Что у тебя получилось?

Все, что осталось сделать – привести подобные слагаемые. Приводим:

Итак, первое тождественное преобразование мы успешно разобрали, хотя уверена, что ты и без меня его знал и активно использовал. Главное – не забывай про знаки при числах и меняй их на противоположные при переносе через знак равенства!

Умножение-деление

Начнем сразу же с примера

Смотрим и соображаем: что нам не нравится в этом примере? Неизвестное все в одной части, известные – в другой, но что-то нам мешает… И это что-то – четверка, так как если бы ее не было, все было бы идеально – икс равен числу – именно так, как нам и нужно!

Как можно от неё избавиться? Перенести вправо мы не можем, так как тогда нам нужно переносить весь множитель (мы же не можем ее взять и оторвать от  ), а переносить весь множитель тоже не имеет смысла…

Пришло время вспомнить про деление, в связи с чем разделим все как раз на  ! Все – это означает и левую, и правую часть. Так и только так! Что у нас получается?

Вот и ответ.

Посмотрим теперь другой пример:

Догадываешься, что нужно сделать в этом случае? Правильно, умножить левую и правую части на  ! Какой ты получил ответ? Правильно.  .

ВАЖНО: при делении, либо умножении на какое-либо число, действие совершается как в левой, так и в правой части уравнения

Наверняка все про тождественные преобразования ты и так уже знал. Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего — Например, для решения нашего большого примера:

Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования. Так что начнем!

Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности. Если ты не помнишь, что это такое и как раскрываются скобки, настоятельно рекомендую почитать тему «Формулы сокращенного умножения», так как эти навыки пригодятся тебе при решении практически всех примеров, встречающихся на экзамене.
Раскрыл? Сравниваем:

Теперь пришло время привести подобные слагаемые. Помнишь, как нам в тех же начальных классах говорили «не складываем мухи с котлетами»? Вот напоминаю об этом.

Складываем все отдельно – множители, у которых есть  , множители, у которых есть   и остальные множители, в которых нет неизвестных.

Как приведешь подобные слагаемые, перенеси все неизвестные влево, а все, что известно вправо. Что у тебя получилось?

Как ты видишь, иксы в квадрате исчезли, и мы видим совершенно обычное линейное уравнение. Осталось только найти  !

И напоследок скажу еще одну очень важную вещь про тождественные преобразования – тождественные преобразования применимы не только для линейных уравнений, но и для квадратных, дробных рациональных и других.

Просто нужно запомнить, что при переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число, мы умножаем/делим обе части уравнения на ОДНО и то же число.

Что еще ты вынес из этого примера? Что глядя на уравнение не всегда можно прямо и точно определить, является ли оно линейным или нет. Необходимо сначала полностью упростить выражение, и лишь потом судить, каким оно является.

Линейные уравнения. Примеры.

Вот тебе еще пару примеров для самостоятельной тренировки – определи, является ли уравнение линейным и если да, найди его корни:

Ответы:

1. Является.

2. Не является.

Раскроем скобки и приведем подобные слагаемые:

Произведем тождественное преобразование – разделим левую и правую часть на  :

Мы видим, что уравнение не является линейным, так что искать его корни не нужно.

3. Является.

Произведем тождественное преобразование – умножим левую и правую часть на  , чтобы избавиться от знаменателя.

Подумай, почему так важно, чтобы  ? Если ты знаешь ответ на этот вопрос, переходим к дальнейшему решению уравнения, если нет – обязательно загляни в тему «ОДЗ», чтобы не наделать ошибок в более сложных примерах. Кстати, как ты видишь, ситуация, когда   невозможна. Почему?
Итак, продолжаем и преобразовываем уравнение:

Если ты без труда со всем справился, поговорим о линейных уравнениях с двумя переменными.

Линейные уравнения с двумя переменными

Теперь перейдем к чуть более сложному — линейным уравнениям с двумя переменными.

Линейные уравнения с двумя переменными имеют вид:

 , где  ,   и   – любые числа и  .

Как ты видишь, вся разница только в том, что в уравнение добавляется еще одна переменная. А так все то же самое – здесь нет иксов в квадрате, нет деления на переменную и т.д. и т.п.

Какой бы привести тебе жизненный пример… Возьмем того же Васю. Допустим, он решил, что каждому из 3-ех друзей он даст одинаковое количество яблок, а   яблока оставит себе. Сколько яблок нужно купить Васе, если каждому другу он даст по   яблоку? А по  ? А если по  ?

Зависимость количества яблок, которое получит каждый человек к общему количеству яблок, которое необходимо приобрести будет выражена уравнением:

 , где

  •   – количество яблок, которое получит   человек ( , или  , или  );
  •   – количество яблок, которое Вася возьмет себе;
  •   – сколько всего яблок нужно купить Васе с учетом количества яблок на человека.

Решая эту задачу, мы получим, что если одному другу Вася даст   яблоко, то ему необходимо покупать   штук, если даст   яблока –   и т.д.

И вообще. У нас две переменные. Почему бы не построить эту зависимость на графике? Строим и отмечаем значение наших  , то есть точки, с координатами  ,   и  !

Как ты видишь,   и   зависят друг от друга линейно, отсюда и название уравнений – «линейные».

Абстрагируемся от яблок и рассмотрим графически различные уравнения. Посмотри внимательно на два построенных графика – прямой и параболы, заданными произвольными функциями:

Найди и отметь на обоих рисунках точки  , соответствующие  .
Что у тебя получилось?

Ты видишь, что на графике первой функции одному   соответствует один  , то есть   и   линейно зависят друг от друга, что не скажешь про вторую функцию.

Конечно, ты можешь возразить, что на втором графике   так же соответствует   икс —   , но это только одна точка, то есть частный случай, так как ты все равно можешь найти такой  , которому соответствует не только один  .

Да и построенный график никак не напоминает линию, а является параболой.

Повторюсь, еще раз: графиком линейного уравнения должна быть ПРЯМАЯ линия.

С тем, что уравнение не будет линейным, если у нас идет   в какой-либо степени – это понятно на примере параболы, хотя для себя ты можешь построить еще несколько простых графиков, например   или  . Но я тебя уверяю — ни один из них не будет представлять собой ПРЯМУЮ ЛИНИЮ.

Не веришь? Построй, а затем сравни с тем, что получилось у меня:

А что будет, если мы разделим что-то на  , например, какое-то число? Будет ли линейная зависимость   и  ? Не будем рассуждать, а будем строить! Например, построим график функции  .

Как-то не выглядит построенное прямой линией… соответственно, уравнение не линейное.
Подведем итоги:

  1. Линейное уравнение — это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна  .
  2. Линейное уравнение с одной переменной имеет вид:
     , где   и   – любые числа  ;
    Линейное уравнение с двумя переменными:
     , где  ,   и  – любые числа  .
  3. Не всегда сразу можно определить, является ли уравнение линейным или нет. Иногда, чтобы понять это, необходимо произвести тождественные преобразования перенести влево/вправо подобные члены, не забыв изменить знак, или умножить/разделить обе части уравнения на одного и тоже число.

Линейные уравнения. коротко о главном

1. Линейное уравнение

Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна  .

2. Линейное уравнение с одной переменной имеет вид:

 , где   и   – любые числа  ;

3. Линейное уравнение с двумя переменными имеет вид:

 , где  ,   и  – любые числа  .

4. Тождественные преобразования

Чтобы определить является ли уравнение линейным или нет, необходимо произвести тождественные преобразования:

  • перенести влево/вправо подобные члены, не забыв изменить знак;
  • умножить/разделить обе части уравнения на одного и тоже число.

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это — не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но, думай сам…

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.  

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Источник: https://youclever.org/book/linejnye-uravneniya-1

Перенос дроби через равно

Перенос через знак равно

Значение дроби не меняется, если умножить ее числитель и знаменатель на одно и то же число, отличное от нуля. Например:

Сокращение дроби.

Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля.

Например:

Сравнение дробей.

Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:

Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, то есть привести к общему знаменателю.

Как решать уравнения с дробями. Показательное решение уравнений с дробями

Следует только учесть следующие моменты:

  1. нельзя делить или умножать уравнение на выражение =0.
  2. значение переменной, обращающее в 0 знаменатель, корнем быть не может;

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются. Избавляемся от знаменателя путем умножения всех членов уравнения на х 1 + 2x = 5х И решаем обычное уравнение 5x – 2х = 1 3x = 1 х = 1/3 Ответ: х = 1/3 Решим уравнение посложнее: Здесь также присутствует ОДЗ: х

-2.

Основы алгебры/Правило переноса слагаемого

Но можно раскрыть скобку и получить два слагаемых: и .

  1. Точно также можно преобразовывать неравенства. Например:

Перенесём все числа в одну сторону.

Возьмём уравнение: Допустим мы хотим перенести все иксы из левой части уравнения в правую.

Вычтем из обеих частей Слева сократится с , и иксов не останется. Справа сократится с , и останется : Теперь можно привести подобные слагаемые: Теперь нужно проверить, совпадают ли левая и правая части уравнения. Заменим неизвестную переменную получившимся результатом:

Линейные уравнения.

Решение линейных уравнений. Правило переноса слагаемого.

Правило переноса слагаемого. При решении и преобразовании уравнений зачастую возникает необходимость переноса слагаемого на другую сторону уравнения.

Заметим, что слагаемое может иметь как знак «плюс», так и знак «минус». Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный. Кроме того, правило работает и для неравенств.

Примеры переноса слагаемого: 5x+2=7x−6.

Сначала переносим 5x из левой части уравнения в правую: 2=7x−6−5x.

Далее переносим (−6) из правой части в левую: 2+6=7x−5x. Обратите внимание, что знак «+» изменился на «-», а знак «-» на «+».

При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение.

−3×2(2+7x)−4+y=0. Переносим 1-е слагаемое в правую сторону уравнения.

Получаем: −4+y=3×2(2+7x). Обратите внимание, что в нашем примере слагаемое — это выражение (−3×2(2+7x)). Поэтому нельзя отдельно переносить (−3×2) и (2+7x), так как это составляющие слагаемого.

Именно поэтому не переносят (−3×2⋅2) и (7x). Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону.

Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».

Это правило зачастую используется для решения . Для решения используются другие методы.

Калькулятор дробей

Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей. Если дробь имеет вид «смешанной дроби», то также заполните поле, соответствующее целой части дроби.

Если у дроби нет целой части, т.е. дробь имеет вид «простой дроби», то оставьте данное поле пустым.

Затем нажмите кнопку «Вычислить».

Вид дроби: простые дроби смешанные дроби Дробь 1 Дробь 2 Результат − + − × ÷ − = − +/− +/− Вычислить ✖ Очистить поля с данными Дробью в математике называется число, представляющее часть единицы или несколько её частей. Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем.

Если у дроби числитель больше знаменателя, то такая дробь называется неправильной.

Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть,называется простой дробью.

Любая смешанная дробь может быть преобразована в неправильную простую дробь (см. пример ниже). 2 3 7 = 2 + 3 7 = 14 7 + 3 7 = 17 7 Похожие калькуляторы

Дроби

Мы купили себе пиццу, чтобы съесть её в течении дня.

Допустим мы решили разделить её на четыре части, чтобы съедать постепенно по одному кусочку. Посмотрите на этот рисунок. Представьте, что это наша пицца, разделённая на четыре куска. Каждый кусок пиццы это и есть дробь, потому что каждый кусок по отдельности это часть пиццы.

Допустим мы съели один кусок. Как его записать? Очень просто.

Сначала рисуется маленькая линия: Внизу этой линии записывается на сколько кусков пицца была разделена.

Пицца была разделена на четыре куска. Значит внизу линии записывается четвёрка: А сверху этой линии записывается сколько кусков пиццы было съедено. Съеден был один кусок, значит сверху записываем единицу: Такие записи называют дробями.

Дробь состоит из числителя и знаменателя. Число, которое записывается сверху, называется числителем дроби.

Число, которое записывается снизу, называется знаменателем дроби.

В нашем примере числитель дроби это единица, а знаменатель дроби — четвёрка.

Сложные выражения с дробями. Порядок действий

Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление.

Заметим, что 14 = 7 · 2. Тогда:

Наконец, считаем третий пример.

Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3, имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа.

Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Дроби. Умножение и деление дробей

Как и в случае со , переводим целое число в дробь с единицей в знаменателе.

Например: Правила умножения дробей (смешанных):

  1. если получили неправильную дробь, то преобразовываем неправильную дробь в смешанную.
  2. перемножаем числители и знаменатели дробей;
  3. преобразовываем смешанные дроби в неправильные;
  4. сокращаем дробь;

Обратите внимание!

Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число. Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения. Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Действия с дробями

Сложить дроби

и .

Опять же складываем числители, а знаменатель оставляем без изменения: В ответе получилась неправильная дробь

. Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть.

В нашем случае целая часть выделяется легко — два разделить на два равно единице: Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца: Пример 3. Сложить дроби

и .

Источник: http://naiti-advokata.ru/perenos-drobi-cherez-ravno-46678/

Правила переноса знаков в уравнении

Перенос через знак равно

Причём неважно, является ли переносимое слагаемое числом, переменной или же целым выражением. Перенесём первое слагаемое в правую сторону уравнения. Получим: Перенесём все числа в одну сторону. В итоге имеем: Допустим мы хотим перенести все иксы из левой части уравнения в правую.

Вычтем из обеих частей 5 x Теперь нужно проверить, совпадают ли левая и правая части уравнения.

Заменим неизвестную переменную получившимся результатом: Теперь можно привести подобные слагаемые: Следовательно, 4 — корень уравнения 5x+2=7x-6. Так как для него тождество доказано, то и для неравенств тоже, по определению. Две части уравнения по определению равны, поэтому можно вычесть из обеих частей уравнения одинаковое выражение, и равенство останется верным.

Решение уравнений

Обычно в таком случае говорят, что обе части уравнения разделили на 5.

Третье уравнение: Это уравнение можно переписать так: Следующее уравнение:

Сделаем вывод: Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак.

И решим ещё одно уравнение: Чтобы решить уравнение, содержащее подобные слагаемые нужно: 1) слагаемые, содержащие переменную, перенести в левую часть уравнения, а числа – в его правую часть, не забывая при переносе менять знаки на противоположные; 2) привести

Решение линейных уравнений 7 класс

Рассмотрим другое уравнение. 5x = 4x + 9 По перенесем «4x» из левой части уравнения в правую, поменяв знак на противоположный.

Несмотря на то, что перед «4x» не стоит никакого знака, мы понимаем, что перед «4x» стоит знак «+».

5x = 4x + 9 5x = +4x + 9 5x − 4x = 9 Теперь и решим уравнение до конца. 5x − 4x = 9 x = 9 Ответ: x = 9 Запомните!

Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

Основные приемы решения уравнений

Таким образом, (4) есть верное числовое равенство.

Но это означает, что a есть корень уравнения (2). Итак, каждый корень уравнения (1) является также корнем уравнения (2), т.

е. (1)

(2). Аналогично доказывается, что (2)(1).

Итак, мы доказали, что при переносе любого слагаемого из одной части уравнения в другую с противоположным знаком получается равносильное уравнение. В частности, мы можем, если нужно, перенести все слагаемые в одну часть уравнения. Иначе говоря, f(x) = g(x) f(x) — g(x) = 0 что является частным случаем эквивалентности (1)(2).

Мы видим, что любое уравнение с одним неизвестным можно заменить эквивалентным уравнением вида h(х) = 0, т. е. уравнением, в левой части которого стоит некоторая функция, а правая часть равна нулю. Указанное преобразование (перенос членов из одной части уравнения в другую) применяется при решении уравнений чрезвычайно часто.

Линейные неравенства.

Исчерпывающий гид (2019)

Ну вот и справились с неравенством! Сейчас я введу формализованное определение линейного неравенства и будем разбираться с ним дальше.

Линейные неравенства — это неравенства вида:

где и – любые числа, причем ; — неизвестная переменная. Например: Все приведенные выше неравенства являются линейными. Во всех них «сидит» очень важная особенность: в таких неравенствах нет иксов в квадрате, в кубе и т.д., кроме того в этих неравенствах нет деления на икс и икс не находится под знаком корня.

Чтобы лучше распознавать линейные неравенства, настоятельно рекомендую тебе еще раз заглянуть в раздел «Скрытые» линейные уравнения или…» темы . Линейные неравенства обладают не меньшим талантом «скрываться».

Чтобы не попасть впросак и с легкостью преобразовывать любые неравенства надо знать и успешно применять 3 очень важных правила.

Конспект урока по теме «Решение уравнений с переносом слагаемых из одной части в другую»

Задачи урока:- образовательные: создание условий для усвоения формирование вычислительных навыков с рациональными числами, формирование общеучебных и общекультурных навыков работы с информацией, формирование навыка применения решения уравнений.

— воспитательные: умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие, воспитывать ответственность и аккуратность, оценивать себя и своих товарищей- развивающие :развитие зрительной памяти, внимания, смысловой памяти, умение обрабатывать информацию и ранжировать ее по указанным основаниям, формировать коммуникативную компетенцию учащихся; выбирать способы решения задач в зависимости от конкретных условий; рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности.

Основные понятия: уравнение, корень уравнения, решение

Правила переносов

от слова, к которому он относится, но не от точки или запятой.

В тексте сноски знаки выравнивают и отбивают от начала текста на полукегельную.

Знак номера и параграфа применяют только к относящимся к ним числам и отбивают на полукегельную. Сдвоенные знаки между собой не отбивают.

Если к знаку относится несколько чисел, то между собой их отбивают на полукегельную, а если эти числа разделены запятыми — пробелом в 3 п.

В журнальных, газетных, информационных изданиях и изданиях оперативной полиграфии во всех перечисленных случаях допустимы отбивки междусловными пробелами. Знаки процента и промилле применяют только с относящимися к ним числами без отбивки.

Источник: http://27advokat.ru/pravila-perenosa-znakov-v-uravnenii-48094/

Здесь закон
Добавить комментарий